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I. KT IN 2D SUPERCONDUCTORS: ISOLATED VORTEX VS. V/AV ENERGIES

Vortices in 2D superconductors are similar to those discussed before in 3D superconductors except
for the tails. Instead of having the currents falling off exponentially with distance for r > λ in 3D, one
instead has a surface current given by,

µ0K⃗s(r) =
Φ0

2π θ̂ ×
{

d/λ2

r r << 2λ2/d
2
r2 r >> 2λ2/d

See the paper by Pearl, Appl. Phys. Lett. 5, 65 (1964), posted on the class web site. The key things to
note are the 1/r2 drop-off of the surface currents with distance, and the crossover length scale, called the
perpendicular penetration depth λ⊥ = 2λ2/d, where d is the film thickness. The crossover length scale
can be macroscopic in size in low carrier density and/or disordered superconducting films of small (nm)
thickness. The other case is a Josephson junction array, where the screening length is the Josephson
penetration depth λJ ∼ 1/

√
Jc. By making the junction critical current density Jc small, the Josephson

screening length can be in excess of many µm. Thus the 1/r “core” of the vortices can extend over
macroscopic distances! The vortices now act like Coulomb charges interacting in a 2D metal, or like
vortices in thin films of superfluid 4He.

The energy of a free vortex can be calculated by ignoring the vortex core (GL κ → ∞) and considering
only the kinetic energy of the currents as,

W1 = πn∗
s,2D

~2

m∗ ln R
r0
, where n∗

s,2D = nsL is the 2D superfluid density, ns is the 3D superfluid density, L

is the length of the vortex (on the order of the film thickness), r0 is the microscopic length scale where
the current density approaches the de-pairing value (we expect r0 ∼ ξGL), and R is the sample size,
where it is assumed that λ⊥ is much greater than the sample size. The energy of a single isolated vortex
scales with the system size, making it very expensive!

Contrast this with the case of a V/AV pair at some distance r apart. Far away (R >> r) the flow
fields of the two vortices cancel to good approximation, making the object appear “neutral” from far
away. The currents are strong only within r, giving rise to a total energy of just,

W2 = 2πn∗
s,2D

~2

m∗ ln r
r0
.

Because W2 << W1 the V/AV excitations are the dominant excitations at low temperature in the
extreme 2D superconductor.

The basic idea of KT-physics is that the elementary excitations out of the ground state are vortex/anti-
vortex (V/AV) pairs. This will be the case in the limit of λ⊥ >> R, which is, admittedly, pretty exotic.
Josephson junction arrays are the best way to get to this extreme 2D limit with superconductors. Your
run of the mill Nb or Al thin films of thickness 10 nm, or so, are nowhere near this limit! In these cases,
the Bogoliubons are the dominant excitations out the ground state.

II. THE KOSTERLITZ-THOULESS PHASE TRANSITION FOR 2D SUPERCONDUCTORS

To naively estimate the KT transition temperature TKT , calculate the Helmholtz free energy of a
free vortex, ∆F1 = W1 − TS1 and see where it changes sign. The entropy S1 comes from counting the
number of microscopic configurations that give the same macroscopic properties. In the case of a free
vortex added to the sample, the vortex could be located in any square of size a, where a is expected to
be on the order of r0. Thus the Helmholtz free energy can be written as,
∆F1 = W1 − kBT ln

(
R2/r20

)
.

This can be expanded as,

∆F1 =
(
πn∗

s,2D
~2

m∗ − 2kBT
)
ln R

r0
− 2kBT ln r0

a .

In the thermodynamic limit R → ∞ only the first term survives. (Also we expect ln r0
a ∼ 0 since both

r0 and a are on the scale of the vortex core size.)
Looking at the temperature where ∆F1 = 0 yields this implicit equation for TKT :



2

n∗
s,2D(TKT ) = 2m∗kB

π~2 TKT . One can find TKT by finding the intersection of n∗
s,2D(T ) and the line

described by 2m∗kB

π~2 T . The class web site shows such data from superfluid 4He and In/InOx supercon-
ducting films. From those plots one can see that the superfluid density is heading to zero at some higher
mean field transition temperature, Tc0, but the V/AV fluctuations, and their un-binding, interrupts this
mean field transition at a lower temperature TKT . Hence this is a fluctuation-dominated phase transition.

III. HIGHLIGHTS OF KT PHYSICS IN 2D SUPERCONDUCTORS

For temperatures above TKT one can define a free-vortex correlation length ξ+(T ) ∼ r0e

√
B

TKT
T−TKT ,

where B is a constant of order unity. For length scales less than ξ+(T ) there are no free vortices. Hence
ξ2+(T ) is a measure of the puddle size of free-vortex-free regions. Note that this length scale diverges as
TKT is approached from above. One can use it to estimate the free vortex density as nf (T ) = 1/ξ2+(T ),
for T > TKT . The free vortex density thus goes to zero at TKT . The free vortices will dissipate en-
ergy when acted upon by an external current, thus TKT can be found from the zero-resistance state
of the material, in principle. An estimate of the resistivity of the sample is made in analogy with
the Bardeen-Stephen law used in Lecture 20 (the total resistivity is the normal state resistivity times

the fractional area coverage of vortex cores): ρ(T ) = ρn
r20

ξ2+(T )
, where ρn is the normal state resistiv-

ity of the film. This gives a very specific prediction for the resistivity temperature dependence above TKT .

Now think about what happens below TKT in the presence of a finite current. When a transport
current is applied to a bound V/AV pair, the Lorentz force will act in opposite directions on each vortex
and act to stretch the pair. This gives rise to a peak in the energy of the V/AV pair as a function of
separation r. The V/AV pair can unbind due to a thermal fluctuation activating the system over the
barrier, creating free vortices below TKT . The free-vortex generation rate is given by

G = G0e
−E0/kBT , where E0 = q2 ln

(
q2

r0Φ0j2D

)
is the height of the energy barrier, G0 is the attempt

frequency for jumping over the barrier, q2(T ) =
2π~2n∗

s,2D(T )

m∗ , and j2D = LJs is the 2D surface current
density. With these definitions, the free vortex generation rate is,

G = G0

(
r0Φ0j2D

q2

)q2/kBT

.

But free vortices generated this way can also re-combine and annihilate. This recombination rate is
given by R = R0n

2
f , where nf is the free vortex density induced by the finite current below TKT .

By assuming a dynamic equilibrium and equating the generation and recombination rates, we can cal-
culate the free vortex density as,

nf =
√

G0

R0

(
r0Φ0j2D

q2

)q2/2kBT

, for T < TKT in the presence of a current.

Assuming ρ ∼ E/j2D ∼ nf , then these free vortices will create a longitudinal electric field given by,

E ∼ j
a(T )
2D with a(T ) = 1+

π~2n∗
s,2D(T )

m∗kBT . This exponent has the value of 3 at TKT , and a value of 1 above

TKT (Ohmic dissipation due to free vortices, calculated above). More generally, the E − j2D relation

can be written as E ∼ j
1+2

TKT
T

n∗
s,2D(T )

n∗
s,2D

(TKT )

2D . This form shows that the exponent grows, starting from a
value of 3, for T < TKT . Thus the IV curves show a discontinuous jump in slope from 1 to 3 at TKT ,
followed by a steady rise below that temperature. The large value of the exponent at low temperature
resembles a finite critical current.

Along with this there is a discontinuous drop to zero in superfluid density n∗
s,2D at TKT . This can

be seen from the fact that the E − j2D exponent is a(T ) = 1 +
π~2n∗

s,2D(T )

m∗kBT , which must equal 1 when

T > TKT , hence this requires that n∗
s,2D = 0 above TKT . The abrupt drop in superfluid/super-electron

density at TKT is a universal property of the KT transition.


